login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033693
Theta series of lattice D3 tensor D3 (dimension 9, det. 4096, min. norm 4).
1
1, 0, 72, 192, 864, 1152, 3168, 3456, 10674, 8448, 18432, 17856, 42816, 31104, 61056, 51072, 118224, 80640, 146376, 115776, 258624, 166656, 291744, 233856, 492576, 304128, 534528, 403200, 819072, 521856, 874368, 642816, 1372914, 814848, 1334016, 1008000
OFFSET
0,3
COMMENTS
This theta series is an element of the space of modular forms on Gamma_1(32) with Kronecker character 8 in modulus 32, weight 9/2, and dimension 18. - Andy Huchala, May 16 2023
LINKS
PROG
(Magma)
prec := 30;
basis := [1, 1, 0, 1, 1, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 1, -1, 0, -1, 1, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1];
S := Matrix(9, basis);
L := LatticeWithBasis(S);
T := ThetaSeriesModularForm(L);
Coefficients(PowerSeries(T, prec)); // Andy Huchala, May 16 2023
CROSSREFS
Sequence in context: A254437 A304376 A028977 * A250786 A302886 A235186
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(21)-a(31) from Sean A. Irvine, Jul 13 2020
More terms from Andy Huchala, May 16 2023
STATUS
approved