login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338311
Even composites m such that A003499(m)==6 (mod m).
1
4, 14, 28, 164, 434, 574, 1106, 5084, 5572, 7874, 8386, 13454, 13694, 19964, 21988, 33166, 39934, 40132, 95122, 103886, 113918, 148994, 157604, 215326, 216124, 256004, 277564, 306404, 341342, 366148, 571154, 660674, 662494, 764956, 771374, 876644, 981646, 1070926
OFFSET
1,1
COMMENTS
If p is a prime, then A003499(p)==6 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=6 and b=1, V(m) recovers A003499(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
MATHEMATICA
Select[Range[2, 25000, 2], CompositeQ[#] && Divisible[2*ChebyshevT[#, 3] - 6, #] &]
CROSSREFS
Cf. A337233 (sequence of odd terms), A337777 (a=3).
Sequence in context: A033690 A316213 A296985 * A244714 A218212 A305637
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Oct 22 2020
EXTENSIONS
More terms from Amiram Eldar, Oct 22 2020
STATUS
approved