OFFSET
1,1
COMMENTS
If p is a prime, then A086902(p)==7 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=7, b=-1, V(m) recovers A086902(m).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (2020)
D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021)
MATHEMATICA
Select[Range[2, 25000, 2], CompositeQ[#] && Divisible[LucasL[#, 7] - 7, #] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Oct 22 2020
EXTENSIONS
a(9)-a(15) from Amiram Eldar, Oct 22 2020
a(16)-a(30) from Daniel Suteu, Oct 22 2020
STATUS
approved