login
A335668
Even composites m such that A002203(m) == 2 (mod m).
2
4, 8, 16, 24, 32, 48, 64, 72, 96, 120, 128, 144, 168, 192, 216, 240, 256, 264, 272, 288, 336, 360, 384, 432, 480, 504, 512, 528, 544, 576, 600, 648, 672, 720, 768, 792, 816, 840, 864, 960, 1008, 1024, 1056, 1080, 1088, 1152, 1176, 1200, 1296, 1320, 1344, 1440, 1512
OFFSET
1,1
COMMENTS
If p is a prime, then A002203(p)==2 (mod p).
Even composites for which the congruence holds.
Even composites m for which the sum of the Pell numbers A000129(0) + ... + A000129(m-1) is divisible by m.
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
EXAMPLE
4 is the first composite number m for which A002203(m)==2 (mod m) since A002203(4)=34==2 (mod 4), so a(1)=4.
The next even composite for which the congruence holds is m = 8 since A002203(8)=1154==2 (mod 8), so a(2)=8.
MATHEMATICA
Select[Range[4, 2000, 2], Divisible[LucasL[#, 2] - 2, #] &] (* Amiram Eldar, Jun 18 2020 *)
CROSSREFS
Cf. A270342 (all positive integers), A270345 (all composites), A330276 (odd composites),
Sequence in context: A160746 A160740 A270345 * A181823 A308985 A046059
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Jun 17 2020
STATUS
approved