The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335670 Odd composite integers m such that A014448(m) == 4 (mod m). 8
 9, 85, 161, 341, 705, 897, 901, 1105, 1281, 1853, 2465, 2737, 3745, 4181, 4209, 4577, 5473, 5611, 5777, 6119, 6721, 9701, 9729, 10877, 11041, 12209, 12349, 13201, 13481, 14981, 15251, 16185, 16545, 16771, 19669, 20591, 20769, 20801, 21845, 23323, 24465, 25345 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p is a prime, then A014448(p)==4 (mod p). This sequence contains the odd composite integers for which the congruence holds. The generalized Pell-Lucas sequence of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1. For a=4, b=-1, V(n) recovers A014448(n) (even Lucas numbers). REFERENCES D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020) D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021) LINKS Chai Wah Wu, Table of n, a(n) for n = 1..1000 EXAMPLE 9 is the first odd composite integer for which A014448(9)=439204==4 (mod 9). MAPLE M:= <<4|1>, <1|0>>: f:= proc(n) uses LinearAlgebra:-Modular; local A; A:= Mod(n, M, integer[8]); A:= MatrixPower(n, A, n); 2*A[1, 1] - 4*A[1, 2] mod n; end proc: select(t -> f(t) = 4 and not isprime(t), [seq(i, i=3..10^5, 2)]); # Robert Israel, Jun 19 2020 MATHEMATICA Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[LucasL[3#] - 4, #] &] (* Amiram Eldar, Jun 18 2020 *) CROSSREFS Cf. A006497, A005845 (a=1), A330276 (a=2), A335669 (a=3), A335671 (a=5). Sequence in context: A166902 A275394 A236385 * A196434 A197197 A295118 Adjacent sequences:  A335667 A335668 A335669 * A335671 A335672 A335673 KEYWORD nonn AUTHOR Ovidiu Bagdasar, Jun 17 2020 EXTENSIONS More terms from Jinyuan Wang, Jun 17 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 10:53 EDT 2021. Contains 343732 sequences. (Running on oeis4.)