The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330276 NSW pseudoprimes: odd composite numbers k such that A002315((k-1)/2) == 1 (mod k). 7
 169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945, 11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If p is an odd prime, then A002315((p-1)/2) == 1 (mod p). This sequence consists of the odd composite numbers for which this congruence holds. Equivalently, odd composite numbers k such that A001652((k-1)/2) is divisible by k. LINKS Amiram Eldar, Table of n, a(n) for n = 1..1000 Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arithmetica, Vol. 38, No. 2 (1980), pp. 129-140. EXAMPLE 169 = 13^2 is a term since it is composite and A002315((169-1)/2) - 1 = A002315(84) - 1 is divisible by 169. MATHEMATICA a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1 - a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a - 1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq CROSSREFS Cf. A001652, A002315. Sequence in context: A296304 A156159 A099011 * A351337 A327652 A112076 Adjacent sequences: A330273 A330274 A330275 * A330277 A330278 A330279 KEYWORD nonn AUTHOR Amiram Eldar, Dec 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 10:47 EDT 2023. Contains 361540 sequences. (Running on oeis4.)