|
|
A330276
|
|
NSW pseudoprimes: odd composite numbers k such that A002315((k-1)/2) == 1 (mod k).
|
|
7
|
|
|
169, 385, 961, 1105, 1121, 3827, 4901, 6265, 6441, 6601, 7107, 7801, 8119, 10945, 11285, 13067, 15841, 18241, 19097, 20833, 24727, 27971, 29953, 31417, 34561, 35459, 37345, 37505, 38081, 39059, 42127, 45451, 45961, 47321, 49105, 52633, 53041, 55969, 56953, 58241
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If p is an odd prime, then A002315((p-1)/2) == 1 (mod p). This sequence consists of the odd composite numbers for which this congruence holds.
Equivalently, odd composite numbers k such that A001652((k-1)/2) is divisible by k.
|
|
LINKS
|
Amiram Eldar, Table of n, a(n) for n = 1..1000
Morris Newman, Daniel Shanks, and H. C. Williams, Simple groups of square order and an interesting sequence of primes, Acta Arithmetica, Vol. 38, No. 2 (1980), pp. 129-140.
|
|
EXAMPLE
|
169 = 13^2 is a term since it is composite and A002315((169-1)/2) - 1 = A002315(84) - 1 is divisible by 169.
|
|
MATHEMATICA
|
a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1 - a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a - 1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq
|
|
CROSSREFS
|
Cf. A001652, A002315.
Sequence in context: A296304 A156159 A099011 * A351337 A327652 A112076
Adjacent sequences: A330273 A330274 A330275 * A330277 A330278 A330279
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Amiram Eldar, Dec 08 2019
|
|
STATUS
|
approved
|
|
|
|