|
|
A156159
|
|
Squares of the form k^2+(k+17)^2 with integer k.
|
|
4
|
|
|
169, 289, 625, 2809, 7225, 18769, 93025, 243049, 635209, 3157729, 8254129, 21576025, 107267449, 280395025, 732947329, 3643933225, 9525174409, 24898630849, 123786459889, 323575532569, 845820499225, 4205095700689
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Square roots of k^2+(k+17)^2 are in A155923, values k (except for -5) are in A118120.
lim_{n -> infinity} a(n)/a(n-3) = (17+12*sqrt(2)).
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = ((387+182*sqrt(2))/17^2)^2 for n mod 3 = 1.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 34*a(n-3)-a(n-6)-2312 for n > 6; a(1)=169, a(2)=289, a(3)=625, a(4)=2809, a(5)=7225, a(6)=18769.
G.f.: x*(169+120*x+336*x^2-3562*x^3+336*x^4+120*x^5+169*x^6)/((1-x)*(1-34*x^3+x^6)).
|
|
EXAMPLE
|
625 = 25^2 is of the form k^2+(k+17)^2 with k = 7: 7^2+24^2 = 625. Hence 625 is in the sequence.
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 34, -34, 0, -1, 1}, {169, 289, 625, 2809, 7225, 18769, 93025}, 30] (* Harvey P. Dale, Apr 22 2022 *)
|
|
PROG
|
(PARI) {forstep(n=-5, 1600000, [1, 3], if(issquare(a=2*n*(n+17)+289), print1(a, ", ")))}
|
|
CROSSREFS
|
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156164 (decimal expansion of 17+12*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
G.f. corrected, fourth comment and cross-references edited by Klaus Brockhaus, Sep 23 2009
|
|
STATUS
|
approved
|
|
|
|