login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157649 Decimal expansion of (387 + 182*sqrt(2))/17^2. 3
2, 2, 2, 9, 7, 1, 2, 3, 4, 7, 2, 3, 8, 4, 1, 9, 7, 1, 9, 3, 1, 4, 5, 5, 8, 2, 9, 6, 9, 0, 7, 1, 4, 5, 5, 0, 2, 7, 6, 7, 0, 5, 9, 7, 9, 6, 9, 5, 0, 1, 8, 8, 7, 5, 1, 9, 6, 5, 9, 3, 6, 7, 2, 0, 8, 1, 0, 7, 7, 2, 7, 0, 2, 6, 9, 9, 3, 2, 0, 0, 0, 3, 7, 0, 5, 0, 8, 8, 3, 4, 3, 4, 1, 7, 4, 0, 7, 4, 9, 5, 6, 3, 2, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Lim_{n -> infinity} b(n)/b(n-1) = (387 + 182*sqrt(2))/17^2 for n mod 3 = 1, b = A155923.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

FORMULA

Equals (26 + 7*sqrt(2))/(26 - 7*sqrt(2)) = (3 + 2*sqrt(2))/((19 + 6*sqrt(2))/17)^2 = (3 + 2*sqrt(2))*(6 - sqrt(2))^2/(6 + sqrt(2))^2.

EXAMPLE

(387 + 182*sqrt(2))/17^2 = 2.22971234723841971931...

MATHEMATICA

RealDigits[(387 + 182*Sqrt[2])/17^2, 10, 100][[1]] (* G. C. Greubel, Aug 17 2018 *)

PROG

(PARI) (387 + 182*sqrt(2))/17^2 \\ G. C. Greubel, Aug 17 2018

(MAGMA) SetDefaultRealField(RealField(100)); (387 + 182*Sqrt(2))/17^2; // G. C. Greubel, Aug 17 2018

CROSSREFS

Cf. A118120, A155923, A002193 (decimal expansion of sqrt(2)), A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Sequence in context: A228044 A171529 A260324 * A155695 A195706 A091185

Adjacent sequences:  A157646 A157647 A157648 * A157650 A157651 A157652

KEYWORD

cons,nonn

AUTHOR

Klaus Brockhaus, Mar 11 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 11:59 EDT 2020. Contains 337443 sequences. (Running on oeis4.)