login
A155923
Positive numbers y such that y^2 is of the form x^2+(x+17)^2 with integer x.
7
13, 17, 25, 53, 85, 137, 305, 493, 797, 1777, 2873, 4645, 10357, 16745, 27073, 60365, 97597, 157793, 351833, 568837, 919685, 2050633, 3315425, 5360317, 11951965, 19323713, 31242217, 69661157, 112626853, 182092985, 406014977, 656437405
OFFSET
1,1
COMMENTS
(-5,a(1)) and (A118120(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+17)^2 = y^2. (Offset 1 is assumed for A118120.)
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (19+6*sqrt(2))/17 for n mod 3 = {0, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (387+182*sqrt(2))/17^2 for n mod 3 = 1.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. [From Mohamed Bouhamida, Sep 09 2009]
FORMULA
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1) = 13, a(2) = 17, a(3) = 25, a(4) = 53, a(5) = 85, a(6) = 137.
G.f.: x*(1-x)*(13+30*x+55*x^2+30*x^3+13*x^4)/(1-6*x^3+x^6).
EXAMPLE
(-5,a(1)) = (-5,13) is a solution: (-5)^2+(-5+17)^2 = 25+144 = 169 = 13^2;
(A118120(1), a(2)) = (0, 17) is a solution: 0^2+(0+17)^2 = 289 = 17^2;
(A118120(2), a(3)) = (7, 25) is a solution: 7^2+(7+17)^2 = 49+576 = 625 = 25^2.
MATHEMATICA
LinearRecurrence[{0, 0, 6, 0, 0, -1}, {13, 17, 25, 53, 85, 137}, 50] (* Harvey P. Dale, Feb 11 2015 *)
PROG
(PARI) {forstep(n=-5, 660000000, [1, 3], if(issquare(2*n*(n+17)+289, &k), print1(k, ", ")))}
CROSSREFS
Cf. A118120, A156035 (decimal expansion of 3+2*sqrt(2)), A156163 (decimal expansion of (19+6*sqrt(2))/17), A157649 (decimal expansion of (387+182*sqrt(2))/17^2).
Cf. A156156 (first trisection), A156157 (second trisection), A156158 (third trisection).
Sequence in context: A129070 A335036 A307880 * A248215 A283135 A052491
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Feb 09 2009
EXTENSIONS
G.f. corrected, first and fourth comment and examples edited, cross-reference added by Klaus Brockhaus, Sep 22 2009
STATUS
approved