login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157652
a(n) = 40*(200*n - 49).
3
6040, 14040, 22040, 30040, 38040, 46040, 54040, 62040, 70040, 78040, 86040, 94040, 102040, 110040, 118040, 126040, 134040, 142040, 150040, 158040, 166040, 174040, 182040, 190040, 198040, 206040, 214040, 222040, 230040, 238040, 246040, 254040
OFFSET
1,1
COMMENTS
The identity (80000*n^2 -39200*n +4801)^2 - (100*n^2 -49*n +6)*(8000*n -1960)^2 = 1 can be written as A157653(n)^2 - A157651(n)*a(n)^2 = 1.
FORMULA
a(n) = 2*a(n-1) - a(n-2).
G.f.: x*(6040+1960*x)/(x-1)^2.
E.g.f.: 40*(49 - (49 - 200*x)*exp(x)). - G. C. Greubel, Nov 17 2018
MATHEMATICA
LinearRecurrence[{2, -1}, {6040, 14040}, 40]
PROG
(Magma) I:=[6040, 14040]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..40]];
(PARI) a(n) = 8000*n - 1960.
(Sage) [40*(200*n - 49) for n in (1..40)] # G. C. Greubel, Nov 17 2018
(GAP) List([1..40], n -> 40*(200*n - 49)); # G. C. Greubel, Nov 17 2018
CROSSREFS
Sequence in context: A203352 A064248 A202895 * A264949 A237961 A362954
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 03 2009
STATUS
approved