|
|
A099011
|
|
Pell pseudoprimes: odd composite numbers n such that P(n)-Kronecker(2,n) is divisible by n.
|
|
7
|
|
|
169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215, 6265, 6441, 6479, 6601, 7055, 7801, 8119, 9799, 10945, 11395, 13067, 13079, 13601, 15841, 18241, 19097, 20833, 20951, 24727, 27839, 27971, 29183, 29953, 31417, 31535, 34561, 35459, 37345
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Here P(n) are the Pell numbers (A000129), defined by P(0)=0, P(1)=1, P(x) = 2*P(x-1) + P(x-2) and Kronecker(2,n) is equal to 1 if n is congruent to +-1 mod 8 and equal to -1 if n is congruent to +-3 mod 8.
|
|
LINKS
|
|
|
EXAMPLE
|
169 is a Pell pseudoprime because P(169)-Kronecker(2,169) is divisible by 169.
|
|
MATHEMATICA
|
pell[0] = 0; pell[1] = 1; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellpspQ[n_] := OddQ[n] && CompositeQ[n] && Divisible[pell[n] - JacobiSymbol[2, n], n]; Select[Range[40000], pellpspQ] (* Amiram Eldar, Nov 22 2019 *)
|
|
PROG
|
(Perl)
use Math::Prime::Util qw/:all/;
my($U, $V);
foroddcomposites {
($U, $V) = lucas_sequence($_, 2, -1, $_);
$U = ($U - kronecker(2, $_)) % $_;
print "$_\n" if $U == 0;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|