%I
%S 169,385,961,1105,1121,3827,4901,6265,6441,6601,7107,7801,8119,10945,
%T 11285,13067,15841,18241,19097,20833,24727,27971,29953,31417,34561,
%U 35459,37345,37505,38081,39059,42127,45451,45961,47321,49105,52633,53041,55969,56953,58241
%N NSW pseudoprimes: odd composite numbers k such that A002315((k1)/2) == 1 (mod k).
%C If p is an odd prime, then A002315((p1)/2) == 1 (mod p). This sequence consists of the odd composite numbers for which this congruence holds.
%C Equivalently, odd composite numbers k such that A001652((k1)/2) is divisible by k.
%H Amiram Eldar, <a href="/A330276/b330276.txt">Table of n, a(n) for n = 1..1000</a>
%H Morris Newman, Daniel Shanks, and H. C. Williams, <a href="https://eudml.org/doc/205728">Simple groups of square order and an interesting sequence of primes</a>, Acta Arithmetica, Vol. 38, No. 2 (1980), pp. 129140.
%e 169 = 13^2 is a term since it is composite and A002315((1691)/2)  1 = A002315(84)  1 is divisible by 169.
%t a0 = 1; a1 = 7; k = 5; seq = {}; Do[a = 6 a1  a0; a0 = a1; a1 = a; If[CompositeQ[k] && Divisible[a  1, k], AppendTo[seq, k]]; k += 2, {n, 2, 10^4}]; seq
%Y Cf. A001652, A002315.
%K nonn
%O 1,1
%A _Amiram Eldar_, Dec 08 2019
