login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335672
Odd composite integers m such that A005248(m) == 3 (mod m).
4
15, 105, 195, 231, 323, 377, 435, 665, 705, 1443, 1551, 1891, 2465, 2737, 2849, 3289, 3689, 3745, 3827, 4181, 4465, 4879, 5655, 5777, 6479, 6601, 6721, 7055, 7743, 8149, 9879, 10815, 10877, 11305, 11395, 11663, 12935, 13201, 13981, 15251, 15301, 17119, 17261, 17711, 18407, 18915, 19043, 20999
OFFSET
1,1
COMMENTS
If p is a prime, then A005248(p)==3 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=3, b=1, V(n) recovers A005248(n) (bisection of Fibonacci numbers).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
EXAMPLE
15 is the first odd composite integer for which A005248(15)=18604984==3 (mod 15).
MATHEMATICA
Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[2#] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)
CROSSREFS
Cf. A005248, A335669 (a=3,b=-1), A335673 (a=4,b=1), A335674 (a=5,b=1).
Sequence in context: A223441 A300295 A102791 * A160892 A061550 A174385
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Jun 17 2020
STATUS
approved