OFFSET
1,1
COMMENTS
If p is a prime, then A005248(p)==3 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(n+2)=a*V(n+1)-b*V(n) and V(0)=2, V(1)=a, satisfy the identity V(p)==a (mod p) whenever p is prime and b=-1,1.
For a=3, b=1, V(n) recovers A005248(n) (bisection of Fibonacci numbers).
REFERENCES
D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..1000
D. Andrica and O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, preprint for Mediterr. J. Math. 18, 47 (2021).
EXAMPLE
15 is the first odd composite integer for which A005248(15)=18604984==3 (mod 15).
MATHEMATICA
Select[Range[3, 10000, 2], CompositeQ[#] && Divisible[LucasL[2#] - 3, #] &] (* Amiram Eldar, Jun 18 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ovidiu Bagdasar, Jun 17 2020
STATUS
approved