login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300295
Denominator of (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)).
2
1, 15, 105, 63, 99, 429, 195, 85, 969, 133, 483, 1725, 675, 783, 2697, 1023, 385, 3885, 481, 1599, 5289, 1935, 2115, 6909, 2499, 901, 8745, 1045, 3363, 10797, 3843, 4095, 13065, 4623, 1633, 15549, 1825, 5775, 18249, 6399, 6723, 21165, 7395, 2581, 24297, 2821, 8835, 27645, 9603, 9999, 31209, 10815, 3745
OFFSET
0,2
COMMENTS
The corresponding numerators are given in A144454(n+1).
r(n) = A144454(n+1)/a(n) = Sum_{k=0..n-1} 1/(A(k)*A(k+1)*A(k+2)), with A(j) = 1 + 2*j = A005408(n) for n >= 1, and r(0) = 0. This can be written as r(n) = 1/12 - 1/(4*A(n)*A(n+1)) = (1/3)*n*(n + 2)/(A(n)*A(n+1)). See Jolley, p. 40/41, (209), and the general remark on p. 38, (201). The value of the infinite series is therefore 1/12.
For the proof that numerator(r(n)) = A144454(n+1) one checks the formula with (mod 9) and (mod 3) given there. E.g., if n = 1 + 9*k then r(n-1) = k*(2 + 9*k)/((1 + 6*k)*(1 + 18*k)) and numerator(r(n-1)) = k*(2 + 9*k) = ((n-1)^2 - )/9 as claimed, because this ratio for r(n-1) is in lowest terms.
REFERENCES
L. B. W. Jolley, Summation of Series, Dover Publications, 2nd rev. ed., 1961, pp. 38, 40, 41.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,0,1).
FORMULA
a(n) = denominator(r(n)), with r(n) = (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)), n >= 0. r(n-1) = (1/3)*(n^2 - 1)/((2*n)^2 -1), n >= 1.
G.f. for r(n) = A144454(n+1)/a(n): G(x) = (1/12)*(1 - hypergeometric([1, 2], [5/2], -x/(1-x)))/(1-x) = ((-3 + 5*x)*sqrt(x)/sqrt(1 - x) + 3*sqrt(1 - x)*(1 - x)*arcsinh(sqrt(x)/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x)/sqrt(1 - x))
= ((-3 + 5*x)*sqrt(x/(1-x)) + 3*(1 - x)*sqrt(1 - x)*log((1 + sqrt(x))/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x/(1 - x))).
EXAMPLE
The series begins: 1/(1*3*5) + 1/(3*5*7) + 1/(5*7*9) + ...
The partial sums are r(n) = A144454(n+1)/a(n), n >= 1, and with r(0) = 0 they begin with 0/1, 1/15, 8/105, 5/63, 8/99, 35/429, 16/195, 7/85, 80/969, 11/133, 40/483, 143/1725, 56/675, 65/783, 224/2697, 85/1023, 32/385,...
MATHEMATICA
Table[(n(n+2))/(3(1+2n)(3+2n)), {n, 0, 60}]//Denominator (* Harvey P. Dale, Jun 19 2021 *)
PROG
(PARI) a(n) = denominator((1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n))); \\ Michel Marcus, Mar 15 2018
CROSSREFS
Cf. A005408, A144454(n+1) (numerators).
Sequence in context: A219170 A227331 A223441 * A102791 A335672 A160892
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 15 2018
STATUS
approved