OFFSET
0,2
COMMENTS
The numerators are given in A300296, where details and the Jolley reference are given.
FORMULA
a(n) = denominator(r(n)), with r(n) = n*(5 + 3*n)/(8*(1 + 3*n)*(4 + 3*n)).
a(n) = (1 + 3*n)*(4 + 3*n)/4 if n == 0 or 9 (mod 32), a(n) = (1 + 3*n)*(4 + 3*n)/2 if n == 16 or 25 (mod 32), a(n) = (1 + 3*n)*(4 + 3*n) if n == 1 or 8 or 17 or 24 (mod 32), and for other n one has a(n) = 2*(1 + 3*n)*(4 + 3*n) if n == 0 or 1 (mod 4) and a(n) = 4*(1 + 3*n)*(4 + 3*n) if n == 2 or 3 (mod 4).
G.f.: G(x) = (1/24)*(1 - hypergeometric([1, 2], [7/3], -x/(1-x)))/(1-x).
EXAMPLE
For the first rationals r(n) see A300296.
PROG
(PARI) a(n) = denominator((1/8)*n*(5 + 3*n)/((1 + 3*n)*(4 + 3*n))); \\ Altug Alkan, Mar 18 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 17 2018
STATUS
approved