login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300297
Denominators of (1/8)*n*(5 + 3*n)/((1 + 3*n)*(4 + 3*n)), n >= 0.
1
1, 28, 280, 520, 416, 608, 1672, 2200, 700, 217, 4216, 5032, 2960, 3440, 7912, 9016, 1274, 2860, 12760, 14152, 7808, 8576, 18760, 20440, 5548, 3002, 25912, 27880, 14960, 16016, 34216, 36472, 2425, 10300, 43672, 46216, 24416, 25760
OFFSET
0,2
COMMENTS
The numerators are given in A300296, where details and the Jolley reference are given.
FORMULA
a(n) = denominator(r(n)), with r(n) = n*(5 + 3*n)/(8*(1 + 3*n)*(4 + 3*n)).
a(n) = (1 + 3*n)*(4 + 3*n)/4 if n == 0 or 9 (mod 32), a(n) = (1 + 3*n)*(4 + 3*n)/2 if n == 16 or 25 (mod 32), a(n) = (1 + 3*n)*(4 + 3*n) if n == 1 or 8 or 17 or 24 (mod 32), and for other n one has a(n) = 2*(1 + 3*n)*(4 + 3*n) if n == 0 or 1 (mod 4) and a(n) = 4*(1 + 3*n)*(4 + 3*n) if n == 2 or 3 (mod 4).
G.f.: G(x) = (1/24)*(1 - hypergeometric([1, 2], [7/3], -x/(1-x)))/(1-x).
EXAMPLE
For the first rationals r(n) see A300296.
PROG
(PARI) a(n) = denominator((1/8)*n*(5 + 3*n)/((1 + 3*n)*(4 + 3*n))); \\ Altug Alkan, Mar 18 2018
CROSSREFS
Cf. A300296.
Sequence in context: A159883 A125391 A126549 * A250649 A107418 A183484
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 17 2018
STATUS
approved