|
|
A107418
|
|
a(n) = C(n+3,3)*C(n+6,6).
|
|
1
|
|
|
1, 28, 280, 1680, 7350, 25872, 77616, 205920, 495495, 1101100, 2290288, 4504864, 8446620, 15193920, 26356800, 44279424, 72299997, 115079580, 179012680, 272734000, 407737330, 599124240, 866502000, 1235052000, 1736791875, 2412056556, 3311225568, 4496726080, 6045343480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
|
|
FORMULA
|
G.f.: (20*x^3+45*x^2+18*x+1)/(x-1)^10. - Robert Israel, Feb 24 2017
Sum_{n>=0} 1/a(n) = 63*Pi^2 - 124149/200.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/2 + 1344*log(2)/5 - 40031/200. (End)
|
|
EXAMPLE
|
If n=0 then C(0+3,3)*C(0+6,6) = C(3,3)*C(6,6) = 1*1 = 1.
If n=8 then C(8+3,3)*C(8+6,6) = C(11,3)*C(14,6) = 165*3003 = 495495.
|
|
MAPLE
|
seq(binomial(n+3, 3)*binomial(n+6, 6), n=0..100); # Robert Israel, Feb 24 2017
|
|
MATHEMATICA
|
a[n_] := Binomial[n + 3, 3] * Binomial[n + 6, 6]; Array[a, 30, 0] (* Amiram Eldar, Sep 06 2022 *)
|
|
PROG
|
(PARI) for(n=0, 29, print1(binomial(n+3, 3)*binomial(n+6, 6), ", "))
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|