login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107418
a(n) = C(n+3,3)*C(n+6,6).
1
1, 28, 280, 1680, 7350, 25872, 77616, 205920, 495495, 1101100, 2290288, 4504864, 8446620, 15193920, 26356800, 44279424, 72299997, 115079580, 179012680, 272734000, 407737330, 599124240, 866502000, 1235052000, 1736791875, 2412056556, 3311225568, 4496726080, 6045343480
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: (20*x^3+45*x^2+18*x+1)/(x-1)^10. - Robert Israel, Feb 24 2017
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 63*Pi^2 - 124149/200.
Sum_{n>=0} (-1)^n/a(n) = 3*Pi^2/2 + 1344*log(2)/5 - 40031/200. (End)
EXAMPLE
If n=0 then C(0+3,3)*C(0+6,6) = C(3,3)*C(6,6) = 1*1 = 1.
If n=8 then C(8+3,3)*C(8+6,6) = C(11,3)*C(14,6) = 165*3003 = 495495.
MAPLE
seq(binomial(n+3, 3)*binomial(n+6, 6), n=0..100); # Robert Israel, Feb 24 2017
MATHEMATICA
a[n_] := Binomial[n + 3, 3] * Binomial[n + 6, 6]; Array[a, 30, 0] (* Amiram Eldar, Sep 06 2022 *)
PROG
(PARI) for(n=0, 29, print1(binomial(n+3, 3)*binomial(n+6, 6), ", "))
CROSSREFS
Cf. A062145.
Sequence in context: A126549 A300297 A250649 * A183484 A241621 A027781
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, May 26 2005
EXTENSIONS
Corrected and extended by Rick L. Shepherd, May 27 2005
STATUS
approved