The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250649 Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero 1
 28, 280, 1424, 4853, 12473, 28379, 56088, 103712, 175998, 289559, 445513, 675267, 974698, 1392138, 1913166, 2619191, 3465655, 4583225, 5895042, 7580998, 9518912, 11977473, 14741143, 18198445, 22042896, 26774380, 31970892, 38321697, 45196741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 5 of A250646 LINKS R. H. Hardin, Table of n, a(n) for n = 1..153 FORMULA Empirical: a(n) = -3*a(n-1) -4*a(n-2) +11*a(n-4) +21*a(n-5) +18*a(n-6) -6*a(n-7) -39*a(n-8) -53*a(n-9) -30*a(n-10) +22*a(n-11) +64*a(n-12) +64*a(n-13) +22*a(n-14) -30*a(n-15) -53*a(n-16) -39*a(n-17) -6*a(n-18) +18*a(n-19) +21*a(n-20) +11*a(n-21) -4*a(n-23) -3*a(n-24) -a(n-25) Empirical for n mod 12 = 0: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (791/288)*n^2 + (467/60)*n + 1 Empirical for n mod 12 = 1: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (11065/2592)*n^2 + (61501/7680)*n - (13183/6912) Empirical for n mod 12 = 2: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (9199/5184)*n^2 + (23569/4320)*n + (67/864) Empirical for n mod 12 = 3: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (2155/576)*n^2 + (62941/7680)*n - (537/256) Empirical for n mod 12 = 4: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (8527/2592)*n^2 + (467/60)*n + (41/27) Empirical for n mod 12 = 5: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (7097/2592)*n^2 + (394789/69120)*n - (21631/6912) Empirical for n mod 12 = 6: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (1591/576)*n^2 + (3721/480)*n + (25/32) Empirical for n mod 12 = 7: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (22211/5184)*n^2 + (62941/7680)*n - (10915/6912) Empirical for n mod 12 = 8: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (4559/2592)*n^2 + (2963/540)*n + (8/27) Empirical for n mod 12 = 9: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (1073/288)*n^2 + (61501/7680)*n - (621/256) Empirical for n mod 12 = 10: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (17135/5184)*n^2 + (3721/480)*n + (1123/864) Empirical for n mod 12 = 11: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (14275/5184)*n^2 + (407749/69120)*n - (19363/6912) EXAMPLE Some solutions for n=6 ..2....0....2....6....0....5....5....3....1....2....4....2....1....1....6....3 ..6....0....2....0....0....4....4....1....2....3....5....1....2....0....3....0 ..1....5....5....1....5....2....1....5....4....2....4....3....3....0....4....2 ..3....6....4....1....1....6....3....6....6....4....3....2....0....1....2....4 ..1....0....1....3....2....3....0....0....6....5....1....1....0....4....0....3 ..6....5....2....5....2....1....5....4....0....3....0....4....4....0....4....2 CROSSREFS Sequence in context: A125391 A126549 A300297 * A107418 A183484 A241621 Adjacent sequences: A250646 A250647 A250648 * A250650 A250651 A250652 KEYWORD nonn AUTHOR R. H. Hardin, Nov 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 03:55 EDT 2023. Contains 363118 sequences. (Running on oeis4.)