|
|
A250646
|
|
T(n,k)=Number of length n+1 0..k arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero
|
|
12
|
|
|
1, 1, 6, 1, 17, 6, 1, 36, 23, 20, 1, 65, 44, 125, 28, 1, 106, 89, 476, 280, 72, 1, 161, 134, 1293, 1424, 1061, 120, 1, 232, 219, 2954, 4853, 7696, 2870, 272, 1, 321, 296, 5901, 12473, 34441, 28238, 9495, 496, 1, 430, 433, 10766, 28379, 120114, 163043, 126482
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Table starts
......1.........1............1.............1...............1...............1
......6........17...........36............65.............106.............161
......6........23...........44............89.............134.............219
.....20.......125..........476..........1293............2954............5901
.....28.......280.........1424..........4853...........12473...........28379
.....72......1061.........7696.........34441..........120114..........332827
....120......2870........28238........163043..........677505.........2225195
....272......9495.......126482........915663.........4749950........18399217
....496.....27507.......491943.......4537317........28200435.......129137886
...1056.....86149......2059700......23671551.......177863786.......953809557
...2016....255704......8161068.....118358549......1063874048......6704767056
...4160....782393.....33268124.....601565301......6491819162.....47777146765
...8128...2341381....132637221....3011330309.....38892883673....335147823244
..16512...7090347....534771362...15155615651....234724691398...2360792885729
..32640..21271463...2136620867...75845220727...1407192408230..16540740396740
..65792..64109181...8574987528..380253505733...8460554956974.116054610957529
.130816.192439733..34285733053.1902264449049..50741165814612.812699929957712
.262656.578665211.137334914170.9522274036139.304671802762820
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)
k=2: [order 10]
k=3: [order 24] for n>25
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = (1/3)*n^3 + 2*n^2 + (8/3)*n + 1
n=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7); also a polynomial of degree 3 plus a quasipolynomial of degree 2 with period 2
n=4: [order 14; also a polynomial of degree 5 plus a quasipolynomial of degree 2 with period 6]
n=5: [order 25; also a polynomial of degree 5 plus a quasipolynomial of degree 4 with period 12]
|
|
EXAMPLE
|
Some solutions for n=5 k=4
..4....2....1....4....0....1....1....2....0....2....1....2....2....4....4....3
..1....1....1....1....2....2....0....2....0....1....0....1....2....0....1....3
..1....0....1....1....2....0....0....1....1....0....2....0....2....2....0....1
..0....1....0....0....0....0....1....1....2....4....3....4....1....3....2....2
..1....1....1....3....1....4....3....0....1....3....3....3....1....0....1....4
..3....0....4....3....3....3....3....0....0....2....0....3....3....2....0....4
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|