login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero
1

%I #4 Nov 26 2014 12:23:23

%S 28,280,1424,4853,12473,28379,56088,103712,175998,289559,445513,

%T 675267,974698,1392138,1913166,2619191,3465655,4583225,5895042,

%U 7580998,9518912,11977473,14741143,18198445,22042896,26774380,31970892,38321697,45196741

%N Number of length 5+1 0..n arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero

%C Row 5 of A250646

%H R. H. Hardin, <a href="/A250649/b250649.txt">Table of n, a(n) for n = 1..153</a>

%F Empirical: a(n) = -3*a(n-1) -4*a(n-2) +11*a(n-4) +21*a(n-5) +18*a(n-6) -6*a(n-7) -39*a(n-8) -53*a(n-9) -30*a(n-10) +22*a(n-11) +64*a(n-12) +64*a(n-13) +22*a(n-14) -30*a(n-15) -53*a(n-16) -39*a(n-17) -6*a(n-18) +18*a(n-19) +21*a(n-20) +11*a(n-21) -4*a(n-23) -3*a(n-24) -a(n-25)

%F Empirical for n mod 12 = 0: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (791/288)*n^2 + (467/60)*n + 1

%F Empirical for n mod 12 = 1: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (11065/2592)*n^2 + (61501/7680)*n - (13183/6912)

%F Empirical for n mod 12 = 2: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (9199/5184)*n^2 + (23569/4320)*n + (67/864)

%F Empirical for n mod 12 = 3: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (2155/576)*n^2 + (62941/7680)*n - (537/256)

%F Empirical for n mod 12 = 4: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (8527/2592)*n^2 + (467/60)*n + (41/27)

%F Empirical for n mod 12 = 5: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (7097/2592)*n^2 + (394789/69120)*n - (21631/6912)

%F Empirical for n mod 12 = 6: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (1591/576)*n^2 + (3721/480)*n + (25/32)

%F Empirical for n mod 12 = 7: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (45683/6912)*n^3 + (22211/5184)*n^2 + (62941/7680)*n - (10915/6912)

%F Empirical for n mod 12 = 8: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (3643/576)*n^3 + (4559/2592)*n^2 + (2963/540)*n + (8/27)

%F Empirical for n mod 12 = 9: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (1073/288)*n^2 + (61501/7680)*n - (621/256)

%F Empirical for n mod 12 = 10: a(n) = (389983/207360)*n^5 + (130579/13824)*n^4 + (11441/1728)*n^3 + (17135/5184)*n^2 + (3721/480)*n + (1123/864)

%F Empirical for n mod 12 = 11: a(n) = (389983/207360)*n^5 + (63179/6912)*n^4 + (14545/2304)*n^3 + (14275/5184)*n^2 + (407749/69120)*n - (19363/6912)

%e Some solutions for n=6

%e ..2....0....2....6....0....5....5....3....1....2....4....2....1....1....6....3

%e ..6....0....2....0....0....4....4....1....2....3....5....1....2....0....3....0

%e ..1....5....5....1....5....2....1....5....4....2....4....3....3....0....4....2

%e ..3....6....4....1....1....6....3....6....6....4....3....2....0....1....2....4

%e ..1....0....1....3....2....3....0....0....6....5....1....1....0....4....0....3

%e ..6....5....2....5....2....1....5....4....0....3....0....4....4....0....4....2

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 26 2014