login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300299
Denominators of r(n) := Sum_{k=0..n-1} 1/Product_{j=0..4} (k + j + 1), for n >= 0, with r(0) = 0.
2
1, 120, 720, 1680, 2240, 12096, 20160, 31680, 23760, 11440, 12012, 32760, 174720, 76160, 293760, 372096, 116280, 17955, 117040, 425040, 1020096, 1214400, 478400, 1684800, 982800, 1140048, 657720, 125860, 3452160, 3928320
OFFSET
0,2
COMMENTS
For the numerators see A300298, also for a comment and the Jolley reference. The g.f. of {r(n)}_{n>=0} and examples are given there too.
LINKS
FORMULA
a(n) = denominator(r(n)), with the result of the sum given in the name r(n) = n*(50 + 35*n + 10*n^2 + n^3)/(96*(1 + n)*(2 + n)*(n + 3)*(4 + n)), n >= 0.
MATHEMATICA
Table[Denominator[n (50 + 35 n + 10 n^2 + n^3) / (96 (1 + n)(2 + n) (n + 3) (4 + n))], {n, 0, 50}] (* Vincenzo Librandi, Apr 06 2018 *)
PROG
(GAP) List(List([0..40], n->Sum([0..n-1], k->1/(Product([0..4], j->k+j+1)))), DenominatorRat); # Muniru A Asiru, Apr 05 2018
(PARI) a(n) = denominator(sum(k=0, n-1, prod(j=0, 4, (k+j+1))^(-1))); \\ Altug Alkan, Apr 05 2018
(Magma) [Denominator(n*(50+35*n+10*n^2+n^3)/(96*(1+n)*(2+n)*(n+3)*(4+n))): n in [0..50]]; // Vincenzo Librandi, Apr 06 2018
CROSSREFS
Cf. A300298.
Sequence in context: A005820 A379492 A306602 * A052787 A292970 A052769
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Apr 05 2018
STATUS
approved