login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061550
a(n) = (2*n+1)*(2*n+3)*(2*n+5).
6
15, 105, 315, 693, 1287, 2145, 3315, 4845, 6783, 9177, 12075, 15525, 19575, 24273, 29667, 35805, 42735, 50505, 59163, 68757, 79335, 90945, 103635, 117453, 132447, 148665, 166155, 184965, 205143, 226737, 249795, 274365, 300495, 328233, 357627
OFFSET
0,1
COMMENTS
sum(1/a(k), k=0..n) = 1/12 - 1/((8*n+12)*(2*n+5)). Jolley equation 209 (offset adjusted). - Gary Detlefs, Sep 20 2011
REFERENCES
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40
FORMULA
a(n) = A162540(n)/3.
1/15 + 1/105 + 1/315...= 1/12 [Jolley, eq. 209]
sum_{i=0..n-1} a(i) = A196506(n), partial sums [Jolley eq (43)]. - R. J. Mathar, Mar 24 2011
sum_{i=0..infinity} (-1)^i/a(i) = Pi/8-1/3 = 0.0593657... [Jolley eq 240]
a(n)=(-1)^(n+1)*(4*n^2+12*n+7)/Integral_{x=0..Pi/2} (cos((2*n+3)*x))*(sin(x))^2 dx. - Francesco Daddi, Aug 03 2011
G.f. ( 15+45*x-15*x^2+3*x^3 ) / (x-1)^4. - R. J. Mathar, Oct 03 2011
MAPLE
For n from 0 to 100 do (2*n+1)*(2*n+3)*(2*n+5) end do;
MATHEMATICA
f[n_] := n/GCD[n, 4]; Table[ f[n] f[n + 2] f[n + 4], {n, 1, 70, 2}] (* Robert G. Wilson v, Jan 14 2011 *)
Times@@@(#+{1, 3, 5}&)/@(2Range[0, 35]) (* Harvey P. Dale, Feb 13 2011 *)
Table[(2*n + 1)*(2*n + 3)*(2*n + 5), {n, 35}] (* T. D. Noe, Feb 13 2011 *)
PROG
(PARI) a(n) = { (2*n + 1)*(2*n + 3)*(2*n + 5) } \\ Harry J. Smith, Jul 24 2009
CROSSREFS
Cf. A005408.
Sequence in context: A102791 A335672 A160892 * A174385 A185129 A090454
KEYWORD
easy,nonn,changed
AUTHOR
Jason Earls, Jun 12 2001
EXTENSIONS
Better description and more terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2001
STATUS
approved