Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Dec 28 2024 00:06:38
%S 15,105,315,693,1287,2145,3315,4845,6783,9177,12075,15525,19575,24273,
%T 29667,35805,42735,50505,59163,68757,79335,90945,103635,117453,132447,
%U 148665,166155,184965,205143,226737,249795,274365,300495,328233,357627
%N a(n) = (2*n+1)*(2*n+3)*(2*n+5).
%C sum(1/a(k), k=0..n) = 1/12 - 1/((8*n+12)*(2*n+5)). Jolley equation 209 (offset adjusted). - _Gary Detlefs_, Sep 20 2011
%D L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40
%H Harry J. Smith, <a href="/A061550/b061550.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A162540(n)/3.
%F 1/15 + 1/105 + 1/315...= 1/12 [Jolley, eq. 209]
%F sum_{i=0..n-1} a(i) = A196506(n), partial sums [Jolley eq (43)]. - _R. J. Mathar_, Mar 24 2011
%F sum_{i=0..infinity} (-1)^i/a(i) = Pi/8-1/3 = 0.0593657... [Jolley eq 240]
%F a(n)=(-1)^(n+1)*(4*n^2+12*n+7)/Integral_{x=0..Pi/2} (cos((2*n+3)*x))*(sin(x))^2 dx. - _Francesco Daddi_, Aug 03 2011
%F G.f. ( 15+45*x-15*x^2+3*x^3 ) / (x-1)^4. - _R. J. Mathar_, Oct 03 2011
%p For n from 0 to 100 do (2*n+1)*(2*n+3)*(2*n+5) end do;
%t f[n_] := n/GCD[n, 4]; Table[ f[n] f[n + 2] f[n + 4], {n, 1, 70, 2}] (* _Robert G. Wilson v_, Jan 14 2011 *)
%t Times@@@(#+{1,3,5}&)/@(2Range[0,35]) (* _Harvey P. Dale_, Feb 13 2011 *)
%t Table[(2*n + 1)*(2*n + 3)*(2*n + 5), {n,35}] (* _T. D. Noe_, Feb 13 2011 *)
%o (PARI) a(n) = { (2*n + 1)*(2*n + 3)*(2*n + 5) } \\ _Harry J. Smith_, Jul 24 2009
%Y Cf. A005408.
%K easy,nonn,changed
%O 0,1
%A _Jason Earls_, Jun 12 2001
%E Better description and more terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2001