login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061548 Numerator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p = 1/4. 6
1, 3, 35, 231, 6435, 46189, 676039, 5014575, 300540195, 2268783825, 34461632205, 263012370465, 8061900920775, 61989816618513, 956086325095055, 7391536347803839, 916312070471295267, 7113260368810144185, 110628135069209194801, 861577581086657669325, 26876802183334044115405 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..500

Robert M. Kozelka, Grade Point Averages and the Central Limit Theorem, American Mathematical Monthly. Nov. 1979 (86:9) pp. 773-7.

FORMULA

a(n) = numerator(binomial(2*n-1/2, -1/2)).

a(n) = numerator((4*n)!/(2^(4*n)*(2*n)!^2)). - Johannes W. Meijer, Jul 06 2009

a(n) = A001448(n)/A001316(n). - Peter Luschny, Mar 23 2014

a(n) is the numerator of the coefficient of power series in x around x=0 of sqrt(1 + sqrt(1 - x))/(sqrt(2)*sqrt(1 - x)). - Karol A. Penson, Apr 16 2018

EXAMPLE

For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The numerator of this term is 3, which is the second term of the sequence.

MAPLE

seq(numer(binomial(2*n-1/2, -1/2)), n=0..20);

MATHEMATICA

Table[Numerator[(4*n) !/(2^(4*n)*(2*n) !^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)

Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + Sqrt[1 - x]]/Sqrt[2 - 2* x]), {x, 0, n}], n]], {n, 0, 20}]. (* Karol A. Penson, Apr 16 2018 *)

PROG

(Sage)

def A061548(n): return binomial(4*n, 2*n)/2^sum(n.digits(2))

[A061548(n) for n in (0..20)]  # Peter Luschny, Mar 23 2014

(PARI) for(n=0, 20, print1(numerator((4*n)!/(2^(4*n)*(2*n)!^2)), ", ")) \\ Indranil Ghosh, Mar 11 2017

(Python)

import math

from fractions import gcd

f = math.factorial

def A061548(n): return f(4*n) / gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017

CROSSREFS

Cf. A061549. Bisection of A001790.

Equals 2*A001448(n)/ A117973(n). - Johannes W. Meijer, Jul 06 2009

Sequence in context: A133710 A130061 A274875 * A019273 A271209 A202883

Adjacent sequences:  A061545 A061546 A061547 * A061549 A061550 A061551

KEYWORD

nonn,frac,easy

AUTHOR

Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001

EXTENSIONS

More terms from Asher Auel (asher.auel(AT)reed.edu), May 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 17:17 EST 2019. Contains 329970 sequences. (Running on oeis4.)