Using Stirling's formula in sequence A000142 it is easy to get the asymptotic expression a(n) ~ 16^n / sqrt(2 * Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
a(n) = 2*A001700(2*n-1) = (2*n+1)*C(2*n), n >= 1, C(n) := A000108(n) (Catalan). G.f.: (1-y*((1+4*y)*c(y)-(1-4*y)*c(-y)))/(1-(4*y)^2) with y^2=x, c(y)= g.f. for A000108 (Catalan). - Wolfdieter Lang, Dec 13 2001
a(n) ~ 2^(-1/2)*Pi^(-1/2)*n^(-1/2)*2^(4*n)*{1 - 1/16*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Jun 11 2002
a(n) = (1/Pi)*integral(x=-2..2, (2+x)^(2*n)/sqrt((2-x)*(2+x))). Peter Luschny, Sep 12 2011
G.f.: (1/2) * (1/(1+4*x^(1/2))^(1/2) + 1/(1-4*x^(1/2))^(1/2)). - Mark van Hoeij, Oct 25 2011
Sum_{n>=1} 1/a(n) = 16/15 +Pi*sqrt(3)/27 -2*sqrt(5)*log(phi)/25, [T. Trif, Fib Quart 38 (2000) 79] with phi=A001622. - R. J. Mathar, Jul 18 2012
D-finite with recurrence n*(2*n-1)*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. - R. J. Mathar, Dec 02 2012
G.f.: sqrt((1 + sqrt(1-16*x))/(2*(1-16*x))) = 1 + 6*x/(G(0)-6*x), where G(k)= 2*x*(4*k+3)*(4*k+1) + (2*k+1)*(k+1) - 2*x*(k+1)*(2*k+1)*(4*k+5)*(4*k+7)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013
a(n) = hypergeom([1-2*n,-2*n],[2],1)*(2*n+1). - Peter Luschny, Sep 22 2014
0 = a(n)*(+65536*a(n+2) - 16896*a(n+3) + 858*a(n+4)) + a(n+1)*(-3584*a(n+2) + 1176*a(n+3) - 66*a(n+4)) + a(n+2)*(+14*a(n+2) - 14*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Oct 22 2014
0 = a(n)^2*(+196608*a(n+1)^2 - 40960*a(n+1)*a(n+2) + 2100*a(n+2)^2) + a(n)*a(n+1)*(-12288*a(n+1)^2 + 2840*a(n+1)*a(n+2) - 160*a(n+2)^2) + a(n+1)^2*(+180*a(n+1)^2 - 48*a(n+1)*a(n+2) + 3*a(n+2)^2) for all n in Z. - Michael Somos, Oct 22 2014
a(n) = [x^n] ( (1 + x)^4/(1 - x)^2 )^n; exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 6*x + 53*x^2 + 554*x^3 + ... = Sum_{n >= 0} A066357(n+1)*x^n. - Peter Bala, Jun 23 2015
a(n) = Sum_{i = 0..n} binomial(4*n,i)*binomial(3*n-i-1,n-i). - Peter Bala, Sep 29 2015
a(n) = A000984(n)*Prod_{j=0, n} (2^j/(j!*(2*j-1)!!))*A068424(n, j)^2, with A068424 the falling factorial. See (5.4) in Podestá link. - Michel Marcus, Mar 31 2016
a(n) = GegenbauerC(2*n, -2*n, -1). - Peter Luschny, May 07 2016
a(n) = [x^n] 1/sqrt(1 - 4*x)^(2*n+1). - Ilya Gutkovskiy, Oct 10 2017
a(n) is the n-th moment of the positive weight function w(x) on (0,16), i.e. in Maple notation, a(n) = int(x^n*w(x), x = 0..16), n = 0,1... , where w(x) = (1/(2*Pi))/((sqrt(4 - sqrt(x))*x^(3/4)). The function w(x) is the solution of the Hausdorff moment problem and is unique. - Karol A. Penson, Mar 06 2018
a(n) = (16^n*(Beta(2*n - 1/2, 1/2) - Beta(2*n - 1/2, 3/2)))/Pi. - Peter Luschny, Mar 06 2018
E.g.f.: hypergeom([1/4,3/4],[1/2,1],16*x). - Karol A. Penson, Mar 08 2018
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k.
a(n) = [(x*y)^(2*n)] (1 + x + y)^(4*n). (End)
|