login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001445
a(n) = (2^n + 2^[ n/2 ] )/2.
6
3, 5, 10, 18, 36, 68, 136, 264, 528, 1040, 2080, 4128, 8256, 16448, 32896, 65664, 131328, 262400, 524800, 1049088, 2098176, 4195328, 8390656, 16779264, 33558528, 67112960, 134225920, 268443648
OFFSET
2,1
COMMENTS
a(n) is union of A007582(n-1) and A164051(n). - Jaroslav Krizek, Aug 14 2009
FORMULA
a(n) = (1/2)*A005418(n+2).
G.f.: x^2*(3-x-6*x^2)/((1-2*x)*(1-2*x^2)).
G.f.: 3*G(0) where G(k) = 1 + x*(4*2^k + 1)*(1 + 2*x*G(k+1))/(1 + 2*2^k). - Sergei N. Gladkovskii, Dec 12 2011 [Edited by Michael Somos, Sep 09 2013]
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3) for n > 4. - Chai Wah Wu, Sep 10 2020
EXAMPLE
G.f. = 3*x^2 + 5*x^3 + 10*x^4 + 18*x^5 + 36*x^6 + 68*x^7 + 136*x^8 + ...
MAPLE
f := n->(2^n+2^floor(n/2))/2;
MATHEMATICA
Table[(2^n + 2^(Floor[n/2]))/2, {n, 2, 50}] (* G. C. Greubel, Sep 08 2017 *)
LinearRecurrence[{2, 2, -4}, {3, 5, 10}, 30] (* Harvey P. Dale, Sep 12 2021 *)
PROG
(PARI) for(n=2, 50, print1((2^n + 2^(n\2))/2, ", ")) \\ G. C. Greubel, Sep 08 2017
CROSSREFS
Sequence in context: A318248 A107232 A134522 * A192860 A125750 A018168
KEYWORD
nonn
STATUS
approved