login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192860
G.f.: exp( Sum_{n>=1} (Sum_{d|n} d*x^d)^n/n ).
4
1, 1, 1, 3, 5, 10, 18, 45, 98, 242, 569, 1360, 3101, 6799, 14674, 31297, 66483, 144954, 326150, 787455, 2019266, 5425240, 14793678, 40049832, 105958990, 272562864, 679336804, 1644951169, 3882700822, 8997217790, 20559767303
OFFSET
0,4
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 45*x^7 + ...
where the logarithm of the g.f. begins:
log(A(x)) = x + (x + 2*x^2)^2/2 + (x + 3*x^3)^3/3 + (x + 2*x^2 + 4*x^4)^4/4 + (x + 5*x^5)^5/5 + (x + 2*x^2 + 3*x^3 + 6*x^6)^6/6 + (x + 7*x^7)^7/7 + (x + 2*x^2 + 4*x^4 + 8*x^8)^8/8 + ...
Explicitly, the logarithm yields the l.g.f. of A192859, which begins:
log(A(x)) = x + x^2/2 + 7*x^3/3 + 9*x^4/4 + 26*x^5/5 + 37*x^6/6 + 162*x^7/7 + ...
MATHEMATICA
With[{m = 35}, CoefficientList[Series[Exp[Sum[(Sum[d*x^d, {d, Divisors[n] }])^n/n, {n, 1, m + 2}]], {x, 0, m}], x]] (* G. C. Greubel, Jan 06 2019 *)
PROG
(PARI) {a(n)=local(A); A=exp(sum(m=1, n+1, sumdiv(m, d, d*x^d +x*O(x^n))^m/m)); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 11 2011
STATUS
approved