login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107232
Expansion of (1+x*c(x^2))^3/sqrt(1-4*x^2), c(x) the g.f. of A000108.
1
1, 3, 5, 10, 18, 35, 65, 126, 238, 462, 882, 1716, 3300, 6435, 12441, 24310, 47190, 92378, 179894, 352716, 688636, 1352078, 2645370, 5200300, 10192588, 20058300, 39373700, 77558760, 152443080, 300540195, 591385545, 1166803110, 2298248550
OFFSET
0,2
COMMENTS
An inverse Chebyshev transform of C(3,n)=(1,3,3,1,0,0,0,...), where g(x)->(1/sqrt(1-4x^2))g(xc(x^2)). In general, (1+xc(x^2))^r/sqrt(1-4x^2) has general term a(n)=sum{k=0..floor(n/2), binomial(n,k)*binomial(r,n-2k)}, r>0.
LINKS
Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238. - From N. J. A. Sloane, Oct 13 2012
FORMULA
a(n)=sum{k=0..floor(n/2), binomial(n, k)*binomial(3, n-2k)}.
D-finite with recurrence: -(n+3)*(3*n-2)*a(n) +12*n*a(n-1) +4*(3*n+1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 04 2017
a(n) ~ 2^(n + 5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2020
CROSSREFS
Sequence in context: A094986 A154949 A318248 * A134522 A001445 A192860
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 13 2005
STATUS
approved