login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196506
a(n) = 1*3*5 + 3*5*7 + 5*7*9 + ... (n terms).
2
0, 15, 120, 435, 1128, 2415, 4560, 7875, 12720, 19503, 28680, 40755, 56280, 75855, 100128, 129795, 165600, 208335, 258840, 318003, 386760, 466095, 557040, 660675, 778128, 910575, 1059240, 1225395, 1410360, 1615503, 1842240, 2092035
OFFSET
0,2
COMMENTS
All terms are multiples of 3.
REFERENCES
Jolley, Summation of Series, Dover (1961), eq (43) page 8.
FORMULA
a(n) = ((4n^2 - 1)*(2n + 3)*(2n + 5) + 15)/ 8 = Sum_{i=1..n} (2i - 1)*(2i + 1)*(2i + 3).
G.f. -3*x*(5 + 15*x - 5*x^2 + x^3) / (x-1)^5 .
a(n) = 2 n^4 + 8 n^3 + 7 n^2 - 2 n. - Harvey P. Dale, Mar 14 2015, corrected by Eric Rowland, Aug 15 2017
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 15, 120, 435, 1128}, 40] (* or *) Accumulate[ Join[{0}, Times@@@Partition[Range[1, 111, 2], 3, 1]]] (* or *) Table[2n^4-5n^2+3, {n, 40}](* Harvey P. Dale, Mar 14 2015 *)
PROG
(Magma) [((4*n^2-1)*(2*n+3)*(2*n+5)+15)/ 8 : n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
CROSSREFS
Cf. A061550 (first differences).
Sequence in context: A161875 A259746 A139615 * A027484 A185542 A226989
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Oct 03 2011
STATUS
approved