login
A185129
Smaller member of a pair of triangular numbers whose sum and difference are triangular.
7
15, 105, 378, 780, 2145, 1485, 5460, 7875, 29403, 21945, 70125, 105570, 61425, 37950, 255255, 306153, 61425, 667590, 749700, 522753, 1016025, 353220, 176715, 1471470, 1445850, 1747515, 246753, 794430, 749700, 514605, 3499335, 2953665, 5073705, 635628, 8382465
OFFSET
1,1
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 197, nr. 8.
EXAMPLE
a(2) = 105, since the pair of triangular numbers 171 = 18*(18+1)/2 and 105 = 14*(14+1)/2 produce the sum 276 = 23*(23+1)/2 and the difference 66 = 11*(11+1)/2 which are both triangular numbers.
MATHEMATICA
kmax=2000; TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=1, k<=kmax, k++, For[h=1, A000217[h]<A000217[k], h++, If[TriangularQ[A000217[k] - A000217[h]] && TriangularQ[A000217[k]+A000217[h]], AppendTo[a, A000217[h]]]]]; a (* Stefano Spezia, Sep 02 2024 *)
PROG
(PARI) lista(n) = {v = vector(nn, n, n*(n+1)/2); for (n=2, nn, for (k=1, n-1, if (ispolygonal(v[n]+v[k], 3) && ispolygonal(v[n]-v[k], 3), print1(v[k], ", ")); ); ); } \\ Michel Marcus, Jan 08 2015
KEYWORD
nonn
AUTHOR
Martin Renner, Jan 20 2012
STATUS
approved