login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185253
a(n) = A185128(n) - A185129(n).
8
6, 66, 325, 210, 1596, 2701, 1326, 903, 1225, 16836, 6903, 82621, 141778, 181503, 63546, 52975, 354903, 10440, 13530, 405450, 7140, 989121, 1329265, 511566, 668746, 437580, 2102275, 2001000, 2469753, 3229611, 1428895, 3096316, 1963171, 6843150, 856086, 4276350
OFFSET
1,1
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966, p. 197, no. 8.
LINKS
N. J. A. Sloane, Annotated scan of Beiler's Table 81, based on page 197 of Beiler's "Recreations in the Theory of Numbers: The Queen of Mathematics Entertains", New York, Dover, First ed., 1964.
MATHEMATICA
kmax=2000; TriangularQ[n_]:=IntegerQ[(Sqrt[1+8n]-1)/2]; A000217[n_]:=n(n+1)/2; a={}; For[k=1, k<=kmax, k++, For[h=1, A000217[h]<A000217[k], h++, If[TriangularQ[d=A000217[k] - A000217[h]] && TriangularQ[A000217[k]+A000217[h]], AppendTo[a, d]]]]; a (* Stefano Spezia, Sep 02 2024 *)
PROG
(PARI) lista(nn) = {v = vector(nn, n, n*(n+1)/2); for (n=2, nn, for (k=1, n-1, if (ispolygonal(v[n]+v[k], 3) && ispolygonal(v[n]-v[k], 3), print1(v[n]-v[k], ", ")); ); ); } \\ Michel Marcus, Jan 08 2015
KEYWORD
nonn
AUTHOR
Martin Renner, Jan 20 2012
EXTENSIONS
Edited by N. J. A. Sloane, Dec 28 2024 (replaced definition with simpler and more explicit formula from Michel Marcus, Jan 08 2015)
STATUS
approved