login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064167
Product of numerator and denominator of the n-th harmonic number, 1 + 1/2 + 1/3 +...+ 1/n.
3
1, 6, 66, 300, 8220, 980, 50820, 213080, 17965080, 18600120, 2320468920, 2384502120, 412970037480, 422245703880, 430902992520, 1756076802480, 516336630329520, 58297387228080, 21362271268818480, 866533600973040, 97555876321904, 98772315738096, 52866073370045936, 481103506052529360
OFFSET
1,2
COMMENTS
Numerator and denominator in definition have no common divisors >1.
LINKS
EXAMPLE
The 3rd harmonic number is 11/6. So a(3) = 11 * 6 = 66.
MATHEMATICA
Numerator[#]Denominator[#]&/@HarmonicNumber[Range[30]] (* Harvey P. Dale, May 01 2022 *)
PROG
(PARI) a(n) = my(h=sum(k=1, n, 1/k)); numerator(h) * denominator(h); \\ Michel Marcus, Sep 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Sep 19 2001
EXTENSIONS
More terms from Michel Marcus, Sep 07 2019
STATUS
approved