login
A335666
a(n) is the sum, over all overpartitions of n, of the overlined parts.
3
1, 3, 10, 21, 46, 90, 168, 295, 511, 850, 1382, 2198, 3430, 5260, 7960, 11861, 17468, 25445, 36670, 52346, 74092, 103986, 144840, 200322, 275191, 375662, 509816, 687960, 923442, 1233340, 1639312, 2168999, 2857460, 3748772, 4898652, 6377023, 8271294, 10690830, 13771912, 17683642
OFFSET
1,2
LINKS
K. Bringmann, J. Lovejoy, and R. Osburn, Rank and crank moments for overpartitions, Journal of Number Theory, 129 (2009), 1758-1772.
FORMULA
G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) * Sum_{n>=1} n*q^n/(1+q^n).
a(n) = A235793(n) - A335651(n). - Omar E. Pol, Jun 17 2020
EXAMPLE
The 8 overpartitions of 8 are [3], [3'], [2,1], [2,1'], [2',1], [2',1'], [1,1,1], [1',1,1], and so a(3) = 10.
PROG
(PARI) my(N=44, q='q+O('q^N)); Vec( prod(k=1, N, (1+q^k)/(1-q^k)) * sum(k=1, N, k*q^k/(1+q^k)) ) \\ Joerg Arndt, Jun 18 2020
CROSSREFS
Cf. A305101 (number of overlined parts).
Sequence in context: A117495 A007687 A330273 * A192033 A295063 A298856
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jun 17 2020
STATUS
approved