login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182026 a(n) = 288*binomial(2*n,n-5)+8*Sum(binomial(2*n,n-5-i)*(5+i),i=1..n-5). 1
0, 0, 0, 0, 0, 288, 3504, 26936, 168000, 930240, 4775232, 23279256, 109368864, 499928000, 2237835600, 9854764920, 42836127360, 184246957440, 785668464000, 3326326610400, 13998420079488, 58611422003904, 244341952079456, 1014823115578800, 4201232634318720, 17343550105777280, 71420954783418240, 293472577948946760, 1203572398002156000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Table of n, a(n) for n=0..28.

Olivia Beckwith, Steven J. Miller, Karen Shen, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, arXiv preprint arXiv:1112.3719 [math.PR], 2011-2012.

Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Electronic Journal of Combinatorial Number Theory, Volume 15 (2015) #A21.

MAPLE

f:=n->288*binomial(2*n, n-5)+8*add(binomial(2*n, n-5-i)*(5+i), i=1..n-5);

[seq(f(n), n=0..40)];

MATHEMATICA

Table[288*Binomial[2n, n-5]+8*Sum[Binomial[2n, n-5-i](5+i), {i, n-5}], {n, 0, 30}] (* Harvey P. Dale, Apr 10 2019 *)

PROG

(PARI) a(n) = 288*binomial(2*n, n-5) + sum(i=1, n-5, binomial(2*n, n-5-i)*(5+i)); \\ Michel Marcus, Apr 05 2019

CROSSREFS

Cf. A182025.

Sequence in context: A322677 A235552 A033692 * A229506 A332429 A232340

Adjacent sequences:  A182023 A182024 A182025 * A182027 A182028 A182029

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 07 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 03:47 EDT 2020. Contains 336368 sequences. (Running on oeis4.)