login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322677 a(n) = 16 * n * (n+1) * (2*n+1)^2. 3
0, 288, 2400, 9408, 25920, 58080, 113568, 201600, 332928, 519840, 776160, 1117248, 1560000, 2122848, 2825760, 3690240, 4739328, 5997600, 7491168, 9247680, 11296320, 13667808, 16394400, 19509888, 23049600, 27050400, 31550688, 36590400, 42211008, 48455520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^4.

sqrt(a(n)+1) - sqrt(a(n)) = (sqrt(n+1) - sqrt(n))^4.

a(n) = A033996(A033996(n)).

Sum_{n>=1} 1/a(n) = (5 - Pi^2/2)/16 = 0.004074862465957543161422156253870277... - Vaclav Kotesovec, Dec 23 2018

From Colin Barker, Dec 23 2018: (Start)

G.f.: 96*x*(3 + x)*(1 + 3*x) / (1 - x)^5.

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.

(End)

EXAMPLE

(sqrt(2) - sqrt(1))^4 = (sqrt(9) - sqrt(8))^2 = sqrt(289) - sqrt(288). So a(1) = 288.

PROG

(PARI) {a(n) = 16*n*(n+1)*(2*n+1)^2}

(PARI) concat(0, Vec(96*x*(3 + x)*(1 + 3*x) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 23 2018

CROSSREFS

sqrt(a(n)+1) + sqrt(a(n)) = (sqrt(n+1) + sqrt(n))^k: A033996(n) (k=2), A322675 (k=3), this sequence (k=4).

Sequence in context: A235072 A235769 A049230 * A235552 A033692 A182026

Adjacent sequences:  A322674 A322675 A322676 * A322678 A322679 A322680

KEYWORD

nonn,easy

AUTHOR

Seiichi Manyama, Dec 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 09:17 EDT 2020. Contains 336438 sequences. (Running on oeis4.)