login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A182025 a(n) = 31*binomial(2*n,n-4) + Sum_{i=1..n-4} binomial(2*n,n-4-i)*(4+i). 1
0, 0, 0, 0, 31, 315, 2112, 11830, 60060, 287028, 1317840, 5883768, 25741485, 110921525, 472431960, 1993896450, 8354335080, 34799391000, 144259293600, 595644532560, 2451231964350, 10059146122662, 41181227878560, 168246990214380, 686162857445736, 2794089011606200, 11362424624634720, 46152024284293200, 187266363241782825 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Table of n, a(n) for n=0..28.

Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, arXiv preprint arXiv:1112.3719 [math.PR], 2011-2012.

Olivia Beckwith, Victor Luo, Stephen J. Miller, Karen Shen, Nicholas Triantafillou, Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles, Electronic Journal of Combinatorial Number Theory, Volume 15 (2015) #A21.

FORMULA

Conjecture: 558*(n-4)*(n+4)*a(n) +7*(-631*n^2+777*n+4600)*a(n-1) +4370*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Aug 08 2012

MAPLE

f:=n->31*binomial(2*n, n-4)+add(binomial(2*n, n-4-i)*(4+i), i=1..n-4);

[seq(f(n), n=0..40)];

MATHEMATICA

Table[31*Binomial[2n, n-4]+Sum[Binomial[2n, n-4-i](4+i), {i, n-4}], {n, 0, 30}] (* Harvey P. Dale, May 24 2016 *)

PROG

(PARI) a(n) = 31*binomial(2*n, n-4) + sum(i=1, n-4, binomial(2*n, n-4-i)*(4+i)); \\ Michel Marcus, Apr 05 2019

CROSSREFS

Cf. A182026.

Sequence in context: A221306 A142382 A137318 * A221189 A029813 A138697

Adjacent sequences:  A182022 A182023 A182024 * A182026 A182027 A182028

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 06 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 12:37 EST 2019. Contains 329968 sequences. (Running on oeis4.)