login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362493
E.g.f. satisfies A(x) = exp(x - x^3/3 * A(x)^3).
2
1, 1, 1, -1, -31, -319, -2279, -4199, 269473, 7155233, 114846641, 920526641, -18415853279, -1115017249631, -31675298017271, -526379460621559, 2394778195929281, 603748739138745281, 27895091311964499553, 769764386129113157473, 6164705700089328588481
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(x^3 * exp(3*x))/3) = ( LambertW(x^3 * exp(3*x))/x^3 )^(1/3).
a(n) = n! * Sum_{k=0..floor(n/3)} (-1/3)^k * (3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3*exp(3*x))/3)))
CROSSREFS
Cf. A362478.
Sequence in context: A137318 A182025 A221189 * A029813 A138697 A186071
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 22 2023
STATUS
approved