login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362491
E.g.f. satisfies A(x) = exp(x + x^4/4 * A(x)^4).
4
1, 1, 1, 1, 7, 151, 2251, 26251, 273841, 3281041, 61021801, 1518719401, 38199828151, 905801252071, 21398411003971, 560160675014851, 17260034904184801, 596005144436100001, 21359751419836426321, 773082506262449261521, 28839945213850125032551
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp(x - LambertW(-x^4 * exp(4*x))/4) = ( -LambertW(-x^4 * exp(4*x))/x^4 )^(1/4).
a(n) = n! * Sum_{k=0..floor(n/4)} (1/4)^k * (4*k+1)^(n-3*k-1) / (k! * (n-4*k)!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^4*exp(4*x))/4)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 22 2023
STATUS
approved