login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232446
Primes p such that reversal( p^2 ) + p is also prime.
2
7, 151, 787, 1549, 1579, 2029, 2083, 2179, 2833, 2971, 4549, 4591, 4801, 4999, 5077, 5167, 5179, 5209, 5227, 5407, 6343, 6529, 6547, 6553, 6577, 6679, 7027, 7753, 7867, 7873, 7927, 7963, 7993, 8167, 8191, 8311, 9091, 9103, 9151, 9283, 14251, 14281, 14389, 14437
OFFSET
1,1
LINKS
EXAMPLE
a(1)= 7, it is prime: prime(4)= 7: reversal(7^2)+7= reversal(49)+7= 94+7= 101 which is also prime.
a(2)= 151, it is prime: prime(36)= 151: reversal(151^2)+151= reversal(22801)+151=10822+151= 10973 which is also prime.
MAPLE
with(StringTools): KD:= proc() local a, p; p:=ithprime(n); a:= parse(Reverse(convert((p^2), string)))+p; if isprime(a) then RETURN (p): fi; end: seq(KD(), n=1..3000);
MATHEMATICA
Select[Prime[Range[3000]], PrimeQ[# + FromDigits[Reverse[IntegerDigits[#^2]]]] &]
CROSSREFS
Cf. A061783 (primes p: p+(p reversed) is also prime).
Function reversal is given by A004086. Cf. also A004087.
Sequence in context: A309855 A364845 A339582 * A362491 A202558 A159659
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Nov 24 2013
STATUS
approved