login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that reversal( p^2 ) + p is also prime.
2

%I #8 Nov 27 2013 04:58:21

%S 7,151,787,1549,1579,2029,2083,2179,2833,2971,4549,4591,4801,4999,

%T 5077,5167,5179,5209,5227,5407,6343,6529,6547,6553,6577,6679,7027,

%U 7753,7867,7873,7927,7963,7993,8167,8191,8311,9091,9103,9151,9283,14251,14281,14389,14437

%N Primes p such that reversal( p^2 ) + p is also prime.

%H K. D. Bajpai, <a href="/A232446/b232446.txt">Table of n, a(n) for n = 1..4250</a>

%e a(1)= 7, it is prime: prime(4)= 7: reversal(7^2)+7= reversal(49)+7= 94+7= 101 which is also prime.

%e a(2)= 151, it is prime: prime(36)= 151: reversal(151^2)+151= reversal(22801)+151=10822+151= 10973 which is also prime.

%p with(StringTools): KD:= proc() local a,p; p:=ithprime(n);a:= parse(Reverse(convert((p^2), string)))+p; if isprime(a) then RETURN (p): fi; end: seq(KD(), n=1..3000);

%t Select[Prime[Range[3000]], PrimeQ[# + FromDigits[Reverse[IntegerDigits[#^2]]]] &]

%Y Cf. A061783 (primes p: p+(p reversed) is also prime).

%Y Function reversal is given by A004086. Cf. also A004087.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Nov 24 2013