%I #22 Jul 23 2021 06:00:13
%S 0,0,0,0,288,2112,11928,66192,353544,1817208,9092592,44547912,
%T 214532136,1019264736,4783813296,22238211480,102424615968,468396156360
%N Configurations of linear chains in a cubic lattice.
%C In the notation of Nemirovsky et al. (1992), a(n), the n-th term of this sequence is C_{n,m} for m=2 (and d=3). Here, C_{n,m} is the total number of configurations "for chains of n links with m nearest-neighbor contacts" in a d-dimensional lattice (with d=3). These numbers appear in Table I (p. 1088). - _Petros Hadjicostas_, Jan 03 2019
%H A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108.
%Y Cf. A033155, A033323, A034006, A038729.
%K nonn,more
%O 1,5
%A _N. J. A. Sloane_
%E Name edited by _Petros Hadjicostas_, Jan 03 2019
%E a(12)-a(18) from _Sean A. Irvine_, Jul 23 2021