login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033155 Configurations of linear chains for a square lattice. 11
0, 0, 8, 32, 88, 256, 736, 2032, 5376, 14224, 36976, 95504, 243536, 619168, 1559168, 3916960, 9769072, 24321552, 60199464, 148803824, 366051864, 899559584, 2201636848, 5384254000, 13121348672, 31957730688, 77595810512 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

From Petros Hadjicostas, Jan 03 2019: (Start)

In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=2). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts."

These numbers are given in Table I (p. 1088) in the paper by Nemirovsky et al. (1992). Using Eqs. (5) and (7b) in the paper, we can prove that C_{n,m=1} = 2^1*1!*Bin(2,1)*p_{n,m=1}^{(1)} + 2^2*2!*Bin(2,2)*p_{n,m=1}^{(2)} = 0 + 8*p_{n,m=1}^{(2)} = 8*A038747(n).

(End)

The terms a(12) to a(21) were copied from Table B1 (pp. 4738-4739) in Bennett-Wood et al. (1998). In the table, the authors actually calculate a(n)/4 = C(n, m=1)/4 for 1 <= n <= 29. (They use the notation c_n(k), where k stands for m, which equals 1 here. They call c_n(k) "the number of SAWs of length n with k nearest-neighbour contacts".) - Petros Hadjicostas, Jan 04 2019

LINKS

Table of n, a(n) for n=1..27.

D. Bennett-Wood, I. G. Enting, D. S. Gaunt, A. J. Guttmann, J. L. Leask, A. L. Owczarek, and S. G. Whittington, Exact enumeration study of free energies of interacting polygons and walks in two dimensions, J. Phys. A: Math. Gen. 31 (1998), 4725-4741.

M. E. Fisher and B. J. Hiley, Configuration and free energy of a polymer molecule with solvent interaction, J. Chem. Phys., 34 (1961), 1253-1267.

Sean A. Irvine, Java program (github)

A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).

FORMULA

a(n) = 8*A038747(n) for n >= 1. (It can be proved using Eqs. (5) and (7b) in the paper by Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 03 2019

CROSSREFS

Cf. A038747.

Sequence in context: A018839 A008412 A014819 * A132117 A159941 A053348

Adjacent sequences:  A033152 A033153 A033154 * A033156 A033157 A033158

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Name edited by Petros Hadjicostas, Jan 03 2019

a(22)-a(27) from Sean A. Irvine, Jul 03 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 00:15 EDT 2021. Contains 346456 sequences. (Running on oeis4.)