login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014819 a(n) = Sum_{k=1..n} floor(k^4/n). 2
1, 8, 32, 88, 195, 377, 666, 1096, 1701, 2530, 3630, 5056, 6863, 9115, 11884, 15240, 19249, 24012, 29606, 36126, 43665, 52327, 62220, 73452, 86137, 100398, 116364, 134158, 153915, 175789, 199908, 226432, 255501, 287288, 321958, 359672, 400599, 444927, 492842 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

MAPLE

f := m-> add( floor((nu)^4/m), nu=0..m): seq(f(n), n=1..40);

MATHEMATICA

Table[Sum[Floor[k^4/n], {k, 1, n}], {n, 1, 40}] (* G. C. Greubel, Nov 21 2018 *)

PROG

(PARI) vector(40, n, sum(k=1, n, floor(k^4/n))) \\ G. C. Greubel, Nov 21 2018

(Magma) [(&+[Floor(k^4/n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Nov 21 2018

(Sage) [sum(floor(k^4/n) for k in (1..n)) for n in (1..40)] # G. C. Greubel, Nov 21 2018

CROSSREFS

Cf. A014817, A014818.

Sequence in context: A333174 A018839 A008412 * A033155 A132117 A159941

Adjacent sequences: A014816 A014817 A014818 * A014820 A014821 A014822

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

Title improved by Sean A. Irvine, Nov 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:23 EST 2022. Contains 358630 sequences. (Running on oeis4.)