login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014818
a(n) is the sum over all floor(k^3/n), k=0 to n inclusive.
2
1, 4, 11, 24, 43, 71, 109, 160, 222, 298, 391, 502, 631, 781, 953, 1150, 1369, 1617, 1891, 2196, 2531, 2899, 3301, 3740, 4215, 4726, 5283, 5874, 6511, 7193, 7921, 8700, 9521, 10396, 11323, 12306, 13339, 14431, 15581, 16792, 18061, 19394, 20791, 22254, 23784
OFFSET
1,2
REFERENCES
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.
LINKS
MAPLE
f := m->sum( floor(k^3 / m), k=0..m);
MATHEMATICA
Table[Sum[Floor[k^3 / n], {k, n}], {n, 50}] (* Vincenzo Librandi, Feb 12 2017 *)
PROG
(Magma) [&+[Floor(k^3/n): k in [1..n]]: n in [1..50]]; // Vincenzo Librandi, Feb 12 2017
(PARI) a(n) = sum(k=0, n, k^3\n); \\ Michel Marcus, Feb 12 2017
CROSSREFS
Sequence in context: A008250 A306262 A099074 * A328684 A167875 A006527
KEYWORD
nonn
AUTHOR
STATUS
approved