login
A014818
a(n) is the sum over all floor(k^3/n), k=0 to n inclusive.
2
1, 4, 11, 24, 43, 71, 109, 160, 222, 298, 391, 502, 631, 781, 953, 1150, 1369, 1617, 1891, 2196, 2531, 2899, 3301, 3740, 4215, 4726, 5283, 5874, 6511, 7193, 7921, 8700, 9521, 10396, 11323, 12306, 13339, 14431, 15581, 16792, 18061, 19394, 20791, 22254, 23784
OFFSET
1,2
REFERENCES
M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.
LINKS
MAPLE
f := m->sum( floor(k^3 / m), k=0..m);
MATHEMATICA
Table[Sum[Floor[k^3 / n], {k, n}], {n, 50}] (* Vincenzo Librandi, Feb 12 2017 *)
PROG
(Magma) [&+[Floor(k^3/n): k in [1..n]]: n in [1..50]]; // Vincenzo Librandi, Feb 12 2017
(PARI) a(n) = sum(k=0, n, k^3\n); \\ Michel Marcus, Feb 12 2017
CROSSREFS
Sequence in context: A008250 A306262 A099074 * A328684 A167875 A006527
KEYWORD
nonn
AUTHOR
STATUS
approved