login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328684
Least k such that Sum_{m=1..k} 1/m > Product_{i=1..n} 1/(1 - 1/prime(i)).
2
4, 11, 24, 45, 69, 103, 143, 194, 254, 315, 390, 467, 553, 651, 759, 872, 990, 1121, 1258, 1405, 1566, 1734, 1912, 2097, 2285, 2483, 2696, 2921, 3161, 3415, 3659, 3915, 4178, 4457, 4736, 5030, 5332, 5642, 5964, 6295, 6633, 6988, 7343, 7715, 8099, 8501, 8900, 9296, 9704
OFFSET
1,1
COMMENTS
This sequence compares partial sums of harmonic series with Euler's partial products.
Both Sum_{m=1..k} 1/m and Product_{i=1..n} 1/(1 - 1/prime(i)) are divergent.
LINKS
EXAMPLE
a(2) = 11 because Sum_{m=1..10} 1/m = 7381/2520 = 2.92896... < Product_{i=1..2} 1/(1 - 1/prime(n)) = 3 < Sum_{m=1..11} 1/m = 83711/27720 = 3.01987...
MATHEMATICA
s = 1; prec = 350; dd = {}; h = 1; hh = 1; k = 1; m = 1; Do[
k = k (1/(1 - Prime[n]^-s)); kk = N[k, prec];
While[kk > hh, h = h + 1/(m + 1)^s; hh = N[h, prec]; m++];
AppendTo[dd, m], {n, 1, 68}]; dd
PROG
(PARI) a(n) = my(k=1, pp = prod(i=1, n, 1/(1 - 1/prime(i))), s = 1); while (s <= pp, k++; s += 1/k); k; \\ Michel Marcus, Oct 29 2019
(PARI) apply( {A328684(n, p=1/prod(k=1, n, 1-1/prime(k)))=for(k=1, oo, (0 > p -= 1/k) && return(k))}, [1..49]) \\ M. F. Hasler, Oct 31 2019
(PARI) lista(len) = {my(r = 1, s = 0, k = 0, c = 0); forprime(p = 2, , r /= (1-1/p); while(s <= r, k++; s += 1/k); c++; print1(k, ", "); if(c == len, break)); } \\ Amiram Eldar, Oct 19 2024
CROSSREFS
Cf. A328655.
Sequence in context: A306262 A099074 A014818 * A167875 A006527 A057304
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 25 2019
STATUS
approved