The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A328686 Define a map from the primes to the primes by f(p) = (p-1)/2 if that is prime, or else (p+1)/2 if that is prime, and otherwise is undefined. Start with the n-th prime and iterate f until we cannot go any further; a(n) is the number of steps. 1
 0, 1, 1, 2, 2, 3, 0, 0, 3, 0, 0, 1, 0, 0, 4, 0, 1, 1, 0, 0, 2, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS For each prime, the end of the trajectory is reached when one cannot generate another prime number from it. For example, p(3) = 5 -> 2 (1 iteration), so a(3)=1. Also p(5) = 11 -> 5 -> 2 (2 iterations), 23 -> 11 -> 5 -> 2 (3 iterations) and 47 -> 23 -> 11 -> 5 -> 2 (4 iterations). Hence a(3) = 1, a(5) = 2, a(9) = 3 and a(15) = 4. a(n) = 0 for n = 1, 7, 8, 10, 11, 13, 14, 16, 19, 20, 22, 24, 25, ... The corresponding primes are A176902(n) = 2, 17, 19, 29, 31, 41, 43, ... . The sequence of the last terms of the trajectories begins with 2, 2, 2, 2, 2, 2, 17, 19, 2, 29, 31, 19, 41, 43, 2, 53, 29, 31, 67, ... The following table gives the trajectories of the smallest prime requiring 0, 1, 2, 3, 4, 5, 6, iterations: +------------+----------+------------------------------------------+ | Number of  | smallest |               trajectory                 | | iterations |  prime   |                                          | +------------+----------+------------------------------------------+ |      0     |       2  |  2                                       | |      1     |       3  |  3 -> 2                                  | |      2     |       7  |  7 -> 3 -> 2                             | |      3     |      13  | 13 -> 7 -> 3 -> 2                        | |      4     |      47  | 47 -> 23 -> 11 -> 5 -> 2                 | |      5     |    2879  | 2879 -> 1439 -> 719 -> 359 -> 179 -> 89  | |      6     | 1065601  | 1065601 -> 532801 -> 266401 -> 133201 -> | |            |          |   66601 -> 33301 -> 16651                | +------------+----------+------------------------------------------+ LINKS EXAMPLE a(15) = 4 because prime(15) = 47 and 47 -> 23 -> 11 -> 5 -> 2 with 4 iterations. MAPLE for n from 1 to 100 do:    ii:=0:it:=0:p:=ithprime(n):    for i from 1 to 100 while(ii=0)  :      p1:=(p-1)/2:p2:=(p+1)/2:       if type(p1, prime)=false and type(p2, prime)=false        then        ii:=1:printf(`%d, `, it):        else        it:=it+1:         if isprime(p1)          then           p:=p1:           else           p:=p2:          fi:          fi:         od:        od: MATHEMATICA f[p_] := If[PrimeQ[(q = (p-1)/2)], q, If[PrimeQ[(r = (p+1)/2)], r, 0]]; g[n_] := -2 + Length @ NestWhileList[f, n, #>0 &]; g /@ Select[Range[457], PrimeQ] (* Amiram Eldar, Nov 16 2019 *) CROSSREFS Cf. A000040, A005383, A005385, A176902. The underlying map is A330310. Sequence in context: A246471 A079243 A289814 * A330622 A330629 A304760 Adjacent sequences:  A328683 A328684 A328685 * A328687 A328688 A328689 KEYWORD nonn AUTHOR Michel Lagneau, Oct 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 11:29 EDT 2021. Contains 345397 sequences. (Running on oeis4.)