login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306262
Difference between maximum and minimum sum of products of successive pairs in permutations of [n].
1
0, 0, 0, 4, 11, 24, 42, 68, 101, 144, 196, 260, 335, 424, 526, 644, 777, 928, 1096, 1284, 1491, 1720, 1970, 2244, 2541, 2864, 3212, 3588, 3991, 4424, 4886, 5380, 5905, 6464, 7056, 7684, 8347, 9048, 9786, 10564, 11381, 12240, 13140, 14084, 15071, 16104, 17182
OFFSET
0,4
FORMULA
a(n+1) = a(n) + 1/4*((-1+(-1)^(n-1))^2+2*(n-1)*(n+4)) with a(n) = 0 for n <= 2.
From Alois P. Heinz, Feb 01 2019: (Start)
G.f.: -(x^2+x-4)*x^3/((x+1)*(x-1)^4).
a(n) = (2*n^3+6*n^2-26*n+15-3*(-1)^n)/12 for n > 0.
a(n) = A101986(n-1) - A026035(n) for n > 0. (End)
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Wesley Ivan Hurt, May 28 2021
EXAMPLE
a(4) = 11 = 23 - 12. 1342 and 2431 have sums 23, 3214 and 4123 have sums 12.
MAPLE
a:= n-> `if`(n=0, 0, (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
<0|0|0|0|1>, <-1|3|-2|-2|3>>^n. <<1, 0, 0, 4, 11>>)[1, 1]):
seq(a(n), n=0..50); # Alois P. Heinz, Feb 02 2019
MATHEMATICA
a[n_] := Module[
{min, max, perm, g, mperm},
perm = Permutations[Range[n]];
g[x_] := Sum[x[[i]] x[[i + 1]], {i, 1, Length[x] - 1}];
mperm = Map[g, perm];
min = Min[mperm];
max = Max[mperm];
Return[max - min]]
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 0, 4, 11, 24}, 60] (* Harvey P. Dale, Aug 05 2020 *)
PROG
(PARI) concat([0, 0, 0], Vec(x^3*(4 - x - x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Feb 05 2019
CROSSREFS
Sequence in context: A301045 A008090 A008250 * A099074 A014818 A328684
KEYWORD
nonn
AUTHOR
Louis Rogliano, Feb 01 2019
EXTENSIONS
More terms from Alois P. Heinz, Feb 01 2019
STATUS
approved