login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306259
Composite numbers k such that 2^(k(k-1)) == 1 (mod k^2).
2
21, 105, 165, 205, 231, 273, 301, 341, 385, 465, 561, 609, 645, 651, 861, 889, 903, 1045, 1065, 1105, 1265, 1281, 1365, 1387, 1491, 1705, 1729, 1771, 1785, 1905, 2041, 2047, 2145, 2211, 2265, 2329, 2359, 2373, 2465, 2485, 2665, 2667, 2701, 2821, 3045, 3081, 3165, 3171, 3201, 3277
OFFSET
1,1
COMMENTS
Composites k such that A002326((k^2-1)/2) divides k(k-1).
It contains all Fermat pseudoprimes to base 2, A001567.
Since phi(p^2) = p(p-1), where p is a prime, then by Euler's theorem 2^(p(p-1)) == 1 (mod p^2) for every odd prime p.
LINKS
MAPLE
filter:= k -> not isprime(k) and 2 &^ (k*(k-1)) mod (k^2) = 1:
select(filter, [$4..10000]); # Robert Israel, Feb 07 2019
MATHEMATICA
Select[Range[3300], And[CompositeQ@ #, PowerMod[2, # (# - 1), #^2] == 1] &] (* Michael De Vlieger, Feb 03 2019 *)
PROG
(PARI) isok(k) = !isprime(k) && ((2^(k*(k-1)) % k^2) == 1); \\ Michel Marcus, Feb 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Feb 01 2019
STATUS
approved