login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference between maximum and minimum sum of products of successive pairs in permutations of [n].
1

%I #51 May 28 2021 13:12:34

%S 0,0,0,4,11,24,42,68,101,144,196,260,335,424,526,644,777,928,1096,

%T 1284,1491,1720,1970,2244,2541,2864,3212,3588,3991,4424,4886,5380,

%U 5905,6464,7056,7684,8347,9048,9786,10564,11381,12240,13140,14084,15071,16104,17182

%N Difference between maximum and minimum sum of products of successive pairs in permutations of [n].

%H Colin Barker, <a href="/A306262/b306262.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1).

%F a(n+1) = a(n) + 1/4*((-1+(-1)^(n-1))^2+2*(n-1)*(n+4)) with a(n) = 0 for n <= 2.

%F From _Alois P. Heinz_, Feb 01 2019: (Start)

%F G.f.: -(x^2+x-4)*x^3/((x+1)*(x-1)^4).

%F a(n) = (2*n^3+6*n^2-26*n+15-3*(-1)^n)/12 for n > 0.

%F a(n) = A101986(n-1) - A026035(n) for n > 0. (End)

%F a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - _Wesley Ivan Hurt_, May 28 2021

%e a(4) = 11 = 23 - 12. 1342 and 2431 have sums 23, 3214 and 4123 have sums 12.

%p a:= n-> `if`(n=0, 0, (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,

%p <0|0|0|0|1>, <-1|3|-2|-2|3>>^n. <<1, 0, 0, 4, 11>>)[1, 1]):

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Feb 02 2019

%t a[n_] := Module[

%t {min, max, perm, g, mperm},

%t perm = Permutations[Range[n]];

%t g[x_] := Sum[x[[i]] x[[i + 1]], {i, 1, Length[x] - 1}];

%t mperm = Map[g, perm];

%t min = Min[mperm];

%t max = Max[mperm];

%t Return[max - min]]

%t LinearRecurrence[{3,-2,-2,3,-1},{0,0,0,4,11,24},60] (* _Harvey P. Dale_, Aug 05 2020 *)

%o (PARI) concat([0,0,0], Vec(x^3*(4 - x - x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ _Colin Barker_, Feb 05 2019

%Y Cf. A026035, A101986.

%K nonn

%O 0,4

%A _Louis Rogliano_, Feb 01 2019

%E More terms from _Alois P. Heinz_, Feb 01 2019