login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034006
Number of n-step self-avoiding walks on the 4-dimensional hypercubic lattice with no non-contiguous adjacencies.
7
1, 8, 56, 344, 2120, 12872, 78392, 472952, 2861768, 17223224, 103835096, 623927912, 3753164744, 22526613176, 135308002424, 811435356200, 4868892591752
OFFSET
0,2
COMMENTS
In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=0 (and d=4). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C(n,0) = A173380(n), while for d=3, we have C(n,0) = A174319(n).) - Petros Hadjicostas, Jan 02 2019
LINKS
A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108; see Table I, p. 1088 (the case d=4).
FORMULA
a(n) = 8 + 48*A038746(n) + 192*A038748(n) + 384*A323037(n). (It can be proved using Eq. (5) in Nemirovsky et al. (1992).) - Petros Hadjicostas, Jan 02 2019
CROSSREFS
KEYWORD
nonn,walk,more
EXTENSIONS
Name edited by Petros Hadjicostas, Jan 01 2019
Title clarified, a(0), and a(12)-a(16) from Sean A. Irvine, Jul 29 2020
STATUS
approved