login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034009
Convolution of A000295(n+2) (n>=0) with itself.
8
1, 8, 38, 140, 443, 1268, 3384, 8584, 20965, 49744, 115402, 262996, 590831, 1311900, 2884956, 6293040, 13633305, 29362200, 62916910, 134220380, 285215651, 603983108, 1275072128, 2684358680, 5637149133, 11811165088
OFFSET
0,2
FORMULA
(2^(n+2)-n-3) '*' (2^(n+2)-n-3) where '*' denotes the convolution product.
G.f.: 1/((1-2*x)*(1-x)^2)^2.
Partial sums of A045889.
a(n) = (n-3)*2^(n+4)+binomial(n+3,3)+4*(binomial(n+1,2)+4*n+12)
= 2^(n+4)*(n-3)+(n+7)*(n*(n+11)+42)/6.
a(n) = binomial(n+3,3)*hypergeom([2,-n],[-n-3],2). - Peter Luschny, Sep 19 2014
a(n) = Sum_{k=0..n+4} Sum_{i=0..n+4} (i-k) * C(n-k+4,i+2). - Wesley Ivan Hurt, Sep 19 2017
MAPLE
seq(16*(n-3)*2^n+(n+7)*(n^2+11*n+42)/6, n=0..100); # Robert Israel, Sep 19 2014
MATHEMATICA
Table[Sum[ k Binomial[n + 5, k + 4], {k, 0, n+1}], {n, 0, 26}] (* Zerinvary Lajos, Jul 08 2009 *)
Table[(16 (n-3) 2^n + (n + 7) (n^2 + 11 n + 42) / 6), {n, 0, 40}] (* Vincenzo Librandi, Sep 20 2014 *)
PROG
(Magma) [(16*(n-3)*2^n+(n+7)*(n^2+11*n+42) div 6): n in [0..30]]; // Vincenzo Librandi, Sep 20 2014
CROSSREFS
Sequence in context: A359931 A211063 A065762 * A038732 A038799 A156934
KEYWORD
easy,nonn
EXTENSIONS
Edited by Peter Luschny, Sep 20 2014
STATUS
approved